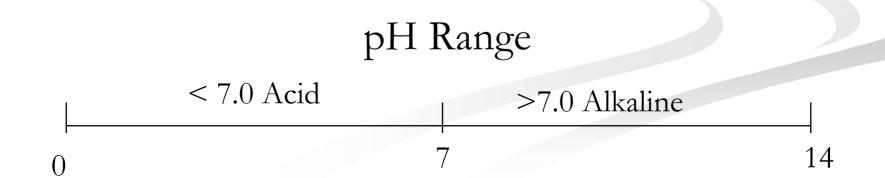
pH and Liming Practices

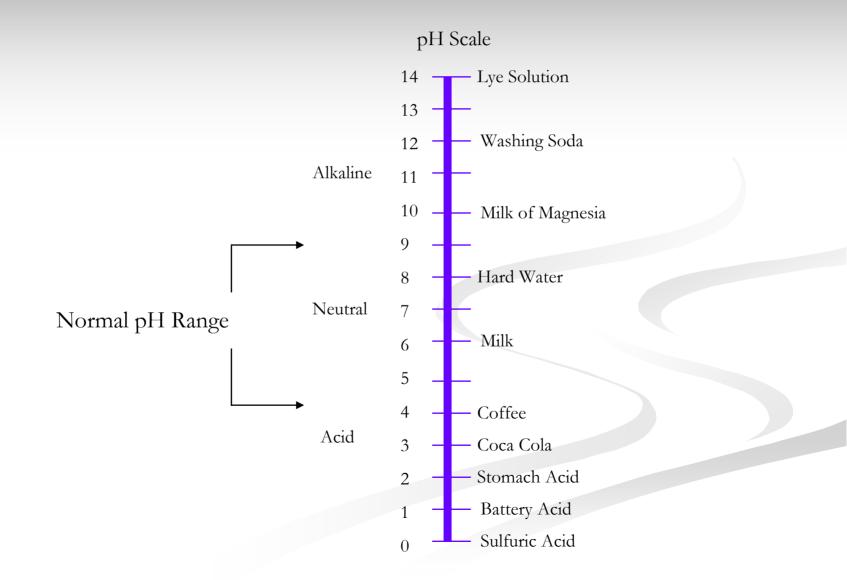
Kent Martin Stafford County 1/5/2010

Outline

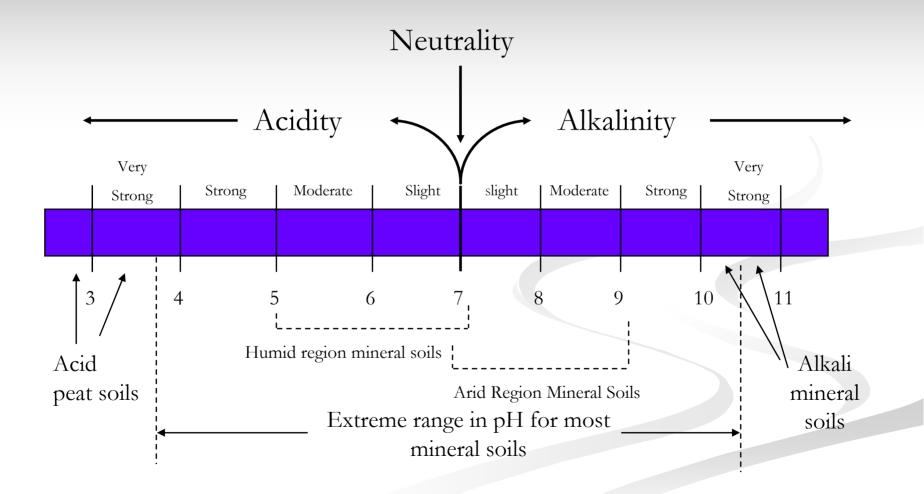
- ♥ What is pH
- Normal pH ranges
- Acid Soil
- Importance of soil pH
- Factors affecting soil pH
- Acid types and measurement
- Neutralizing value of materials
- Soil sampling and pH analysis
- Summary


What is pH

- A measure of the relative acidity of a substance
- Negative logarithm of the hydrogen ion concentraion


pН	H ⁺ Concen	tration
5.0	0.00001	or 10 ⁻⁵
6.0	0.000001	or 10 ⁻⁶
7.0	0.0000001	or 10 ⁻⁷
8.0	0.00000002	l or 10 ⁻⁸

What is pH


- PH is a convenient notation
 - \sim (5.0 is easier to use than 0.00001 or 10⁻⁵)
- The H in pH stands for hydrogen ions
- A change in pH of one unit equals a 10 fold change in H⁺ concentration
- A change of pH 6.0 to 5.7 doubles the acidity

Normal pH Range

Normal pH Range

What is Acid Soil

Ca^{+2} K^{+1} Mg	+2	7 Soils have a net negative charge
	H ⁺¹	
-	Ca ⁺²	Positively charged ions, cations,
Soil -	Mg^{+2}	are retained, preventing their
-	Na ⁺¹	leaching.
-	$\mathrm{NH_4}^{+1}$	The balance of acidic and basic
	Ca ⁺²	ions determines soil pH
Al^{+3}		

Low pH: Dissolves Al⁺⁺⁺

1000 times more soluble at 4.5 pH than 5.5 pH

- Causes plant toxicity
- Interferes with microbe activity, which affects:
 - Nutrient cycling
 - Legume nodulation
 - Residue decomposition

Diseases

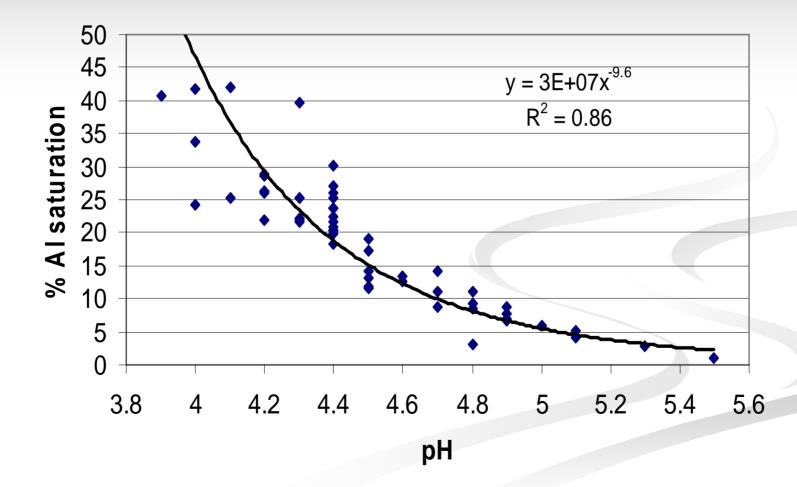
Herbicide breakdown and carryover

High pH: Low nutrient availabilityP, Zn, Fe

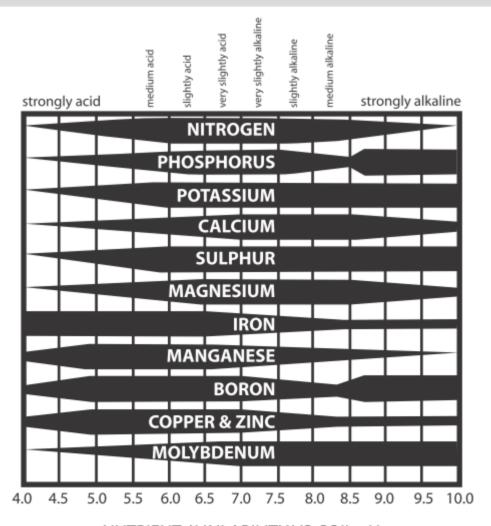
Importance of Soil pH Low soil pH and Al toxicity

pH 5.2

pH 4.5


Reno County, KS 2008

Wheat response to lime


Lime (ECC/a)	pН	Yield (bu/a)	Al (ppm)
0	4.6	14	102
3000	5.1	37	26
6000	5.9	38	0
12000	6.4	37	0

Kansas State University

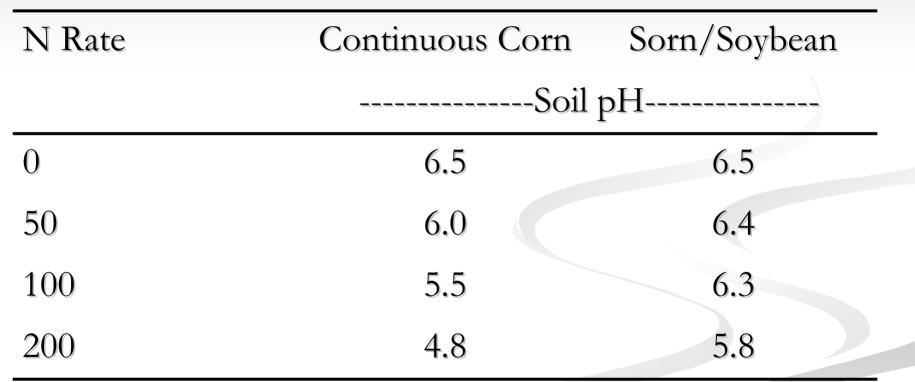
Active Al Increased by Soil Acidity

Oklahoma State University

NUTRIENT AVAILABILITY VS. SOIL pH

Factors Affecting Soil pH

- Parent Material
- Annual Precipitation
 - Higher rainfall \rightarrow Lower pH
- Native Vegetation
- Crop Grown
 - Legumes remove more Ca and Mg than nonlegumes
- Microbial Nitrification
 - 1-2 lbs of lime to neutralize 1 lb N

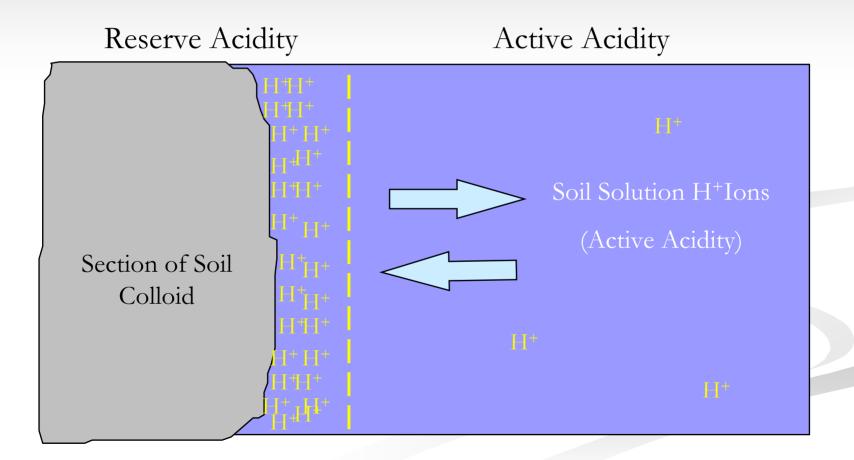

Factors Affecting Soil pH
The process of nitrification creates soil acidity
Ammonium conversion to nitrate = H⁺ released

 $NH_4^+ + 2O_2 \xrightarrow{\text{Nitrifying Bacteria}} NO_3^- + 2H^+ + H_2O$ Ammonium Oxygen Nitrate Hydrogen Water

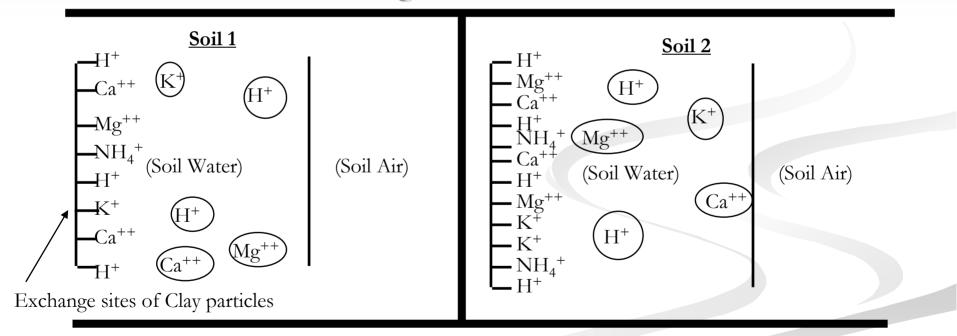
Lime required to neutralize acidity from N application

N Source	Lb ECC/lb N
Ammonia, Urea, UAN	1.8
Ammonium Sulfate	5.4
DAP	3.6
MAP	7.2

Factors Affecting Soil pH

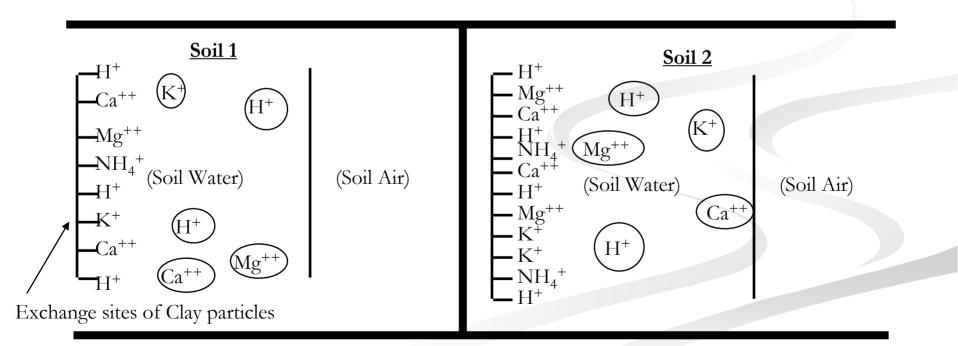


North Central Kansas Experiment Field, Dr. Barney Gordon

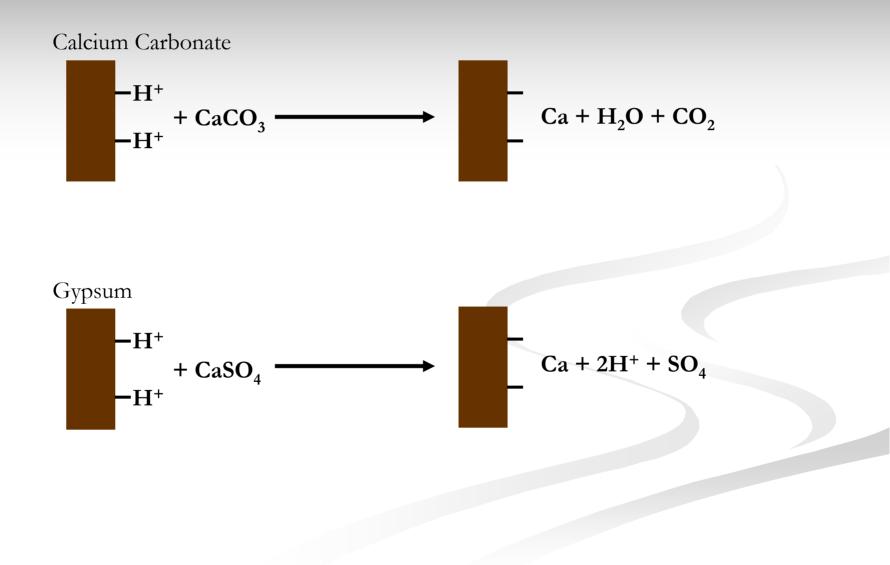

Active Acidity

Affects soil chemical reactions and plant growth
Measured as soil or water pH
Neutralized by <1 pound calcium carbonate/acre

- Reserve Acidity
 - The total acidity
 - Affects the quantity of lime required
 - Measured by buffer pH (buffer index)



- Soil pH is a measure of the acidity of the soil solution
- Buffer pH is a measure of the potential acidity due to the soil solution and the exchange sites



Same soil pH values, but different buffer pH; soil 2 will require more lime than soil 1.

Could we use this as an example of sandy loam vs. clay loam

How Does Lime Work?

Liming Material	Composition	Relative Neutralizing Value
Calcium Carbonate	CaCO ₃	100
Calcitic Lime	$CaCO_3$ + Impurities	50-100
Dolomitic Lime	$CaCO_3 + MgCO_3 + Impurit$	ies 90-109
Quicklime (burned lime)	CaO	150-180
Hydrated lime (slaked lime)	Ca(OH) ₂	115-135
Ground shells		80-90
Wood ashes		40-80

Determined by:

- Purity calcium carbonate equivalent
 - % liming agent vs. % inert materials
- Fineness particle size
 - Determined by dry sieves (8 and 60 mesh)
 - Fine particles dissolve more quickly than coarse
- Expressed as Effective Calcium Carbonate Equivalent (ECCE)

Size Fraction	Dissolved After 1 Year (%)
< 60 mesh	100
60-8 mesh	50
>8 mesh	0

Example:

Size Fraction	Material (%)	Effectiveness Factor	Effectiveness
>8	0	0.0	0
8-60	60	0.5	30
<60	40	1.0	40

Fineness = 70

If a quarry has 80% CCE, the ECC is $70 \times 0.86 = 60.2$ (Combination of purity and fineness)

Pros	Cons	
Aş	g Lime	
Typically lowest cost	Difficulty of uniform application	
Residual benefits	Hard on equipment	
Highest producer profitability	Small margins for vendors	
Fluid Lime		
Uniform application	Higher cost than ag lime	
Quick effect on pH	High rates not practical	
Profit for vendors	Applied as fluid slurry	
Pe	el-Lime	
Uniform application	Highest cost	
Quick effect on pH	Adequate rates not practical	
Profit for vendors	Too attractive marketing	

- Soil sampling should match the depth of incorporation
 - No-till depth should be about 3 inches
- Sample analysis
 - 1:1 water slurry measured with pH probe
 - Buffer pH measured after addition of solution (SMP, Mehlich, Sikora)

Soil test results: pH and buffer pH (if pH < 6.0)</p>

		1:	:1 Soil pH	(% of tota	l samples s	ubmitted)		
	5.0 or lower	5.1 to 5.5	5.6 to 6.0	6.1 to 6.4	6.5 to 7.0	7.1 to 7.5	7.6 to 8.3	8.4 or higher
North Central	4.1	12.4	31.4	17.4	16.7	8.0	9.0	0.9
Central	6.9	13.4	25.5	14.6	15.6	9.7	13.4	0.9
South Central	8.1	13.2	24.1	15.8	15.4	9.9	12.2	1.3

KSU Soil Testing Lab, 2002-2006

Lime Recommendations (Lb ECC/A)¹

	Target pH = 6.8	Target pH = 6.0	Target pH = 5.5
Buffer pH		- Ib ECC/acre	
7.4	0	0	0
7.2	750	375	250
7.0	1,750	875	500
6.8	3,000	1,500	750
6.6	4,500	2,250	1,125
6.4	6,250	3,125	1,625
6.2	8,250	4,125	2,000
6.0	10,250 ²	5,125	2,625
5.8	12,500 ²	6,250	3,125
5.6	15,250 ²	7,625	3,750
5.4	18,000 ²	9,000	4,500
5.2	20,000 ²	10,375 ²	5,250

¹ Based on 6.67 inch soil depth. Soil Depth is the depth of incorporation through rotation. For No-Till systems, alfalfa and grass –assume 2 inch depth of incorporation (≈ 1/3 of rate for 6-7 inch depth).

² When lime recommendation exceeds 10,000 lb ECC/A, we suggest applying one-half rate, incorporate, wait 12 to 18 months and then retest.

Target pH of 6.8 = [25,620 - (6,360 × Buffer pH) + (Buffer pH × Buffer pH × 391)] × Depth (inches)

All crops in Southeast Kansas -east of Flinthills & south of Highway 56 Alfalfa and clover in Northeast Kansas Lime Rec if pH < 6.4

Target pH of 6.0 = [12,810 - (3,180 × Buffer pH) + (Buffer pH × Buffer pH × 196)] × Depth (inches)

All crops in Northeast Kansas except alfalfa and clover All crops in Central and Western Kansas Lime Rec if pH < 5.8

Target pH of 5.5 = [6,405 - (1,590 × Buffer pH) + (Buffer pH × Buffer pH × 98)] × Depth (inches)

Cash flow/lime availability problem areas in Central and Western Kansas Lime Rec if pH < 5.5

Know and adjust for incorporation depth

Incorporation Depth (inch)	Adjustment Factor	
3	0.43	
5	0.71	
7	1.00	
9	1.00 1.29	
11	1.57	

Timing and application of lime

- Apply 3-12 months before planting
- Mix with soil if possible (if no-till, allow more time for activity)
- Adjust for tillage depth

Know assumptions of lime recommendations

Lime quality

Incorporation depth

- Rotational tillage
- ☞No-till


Crop

Target pH

- Crop
- Geography

Financial considerations

Variety Response to Soil pH

Custer, Ok101, Jagalene, Jagger, 2174, AP502Cl, Ok102, 2137

Soil Acidity Effect on Wheat

рΗ	Relative	Yield
	Yield	bu/a
3.8	0	0
4.1	30%	12
4.5	60%	24
5.0	85%	34
5.5	95%	38
6.0	100%	40

Oklahoma State University

Effect of pH on Alfalfa

Summary

- Soil pH is dropping in Kansas, in large part due to the use of N and P fertilizers
- Soil pH is becoming low enough to cause crop issues in many areas, but especially in Central Kansas
- Current fertilizer prices and production economics suggest liming, even if lime has to be hauled some distance should be considered.